Modelling short‐rotation coppice and tree planting for urban carbon management – a citywide analysis
نویسندگان
چکیده
The capacity of urban areas to deliver provisioning ecosystem services is commonly overlooked and underutilized. Urban populations have globally increased fivefold since 1950, and they disproportionately consume ecosystem services and contribute to carbon emissions, highlighting the need to increase urban sustainability and reduce environmental impacts of urban dwellers. Here, we investigated the potential for increasing carbon sequestration, and biomass fuel production, by planting trees and short-rotation coppice (SRC), respectively, in a mid-sized UK city as a contribution to meeting national commitments to reduce CO 2 emissions.Iterative GIS models were developed using high-resolution spatial data. The models were applied to patches of public and privately owned urban greenspace suitable for planting trees and SRC, across the 73 km2 area of the city of Leicester. We modelled tree planting with a species mix based on the existing tree populations, and SRC with willow and poplar to calculate biomass production in new trees, and carbon sequestration into harvested biomass over 25 years.An area of 11 km2 comprising 15% of the city met criteria for tree planting and had the potential over 25 years to sequester 4200 tonnes of carbon above-ground. Of this area, 5·8 km2 also met criteria for SRC planting and over the same period this could yield 71 800 tonnes of carbon in harvested biomass.The harvested biomass could supply energy to over 1566 domestic homes or 30 municipal buildings, resulting in avoided carbon emissions of 29 236 tonnes of carbon over 25 years when compared to heating by natural gas. Together with the net carbon sequestration into trees, a total reduction of 33 419 tonnes of carbon in the atmosphere could be achieved in 25 years by combined SRC and tree planting across the city. Synthesis and applications. We demonstrate that urban greenspaces in a typical UK city are underutilized for provisioning ecosystem services by trees and especially SRC, which has high biomass production potential. For urban greenspace management, we recommend that planting SRC in urban areas can contribute to reducing food-fuel conflicts on agricultural land and produce renewable energy sources close to centres of population and demand.
منابع مشابه
Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice
BACKGROUND Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system an...
متن کاملElevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE).
We investigated the individual and combined effects of elevated CO2 concentration and fertilization on aboveground growth of three poplar species (Populus alba L. Clone 2AS-11, P. nigra L. Clone Jean Pourtet and P. x euramericana Clone I-214) growing in a short-rotation coppice culture for two growing seasons after coppicing. Free-air carbon dioxide enrichment (FACE) stimulated the number of sh...
متن کاملThe Legacy of Past Tree Planting Decisions for a City Confronting Emerald Ash Borer (Agrilus planipennis) Invasion
Management decisions grounded in ecological understanding are essential to the maintenance of a healthy urban forest. Decisions about where and what tree species to plant have both short and long-term consequences for the future function and resilience of city trees. Through the construction of a theoretical damage index, this study examines the legacy effects of a street tree planting program ...
متن کاملHarvesting Systems and Costs for Short Rotation Poplar
The objective of this review is to compare the cost of coppice and longer rotation poplar harvesting technology. Harvesting technology for short rotation poplar has evolved over the years to address both coppice harvest and single-stem harvest systems. Two potential approaches for coppice harvesting are modified forage harvesters and modified mulcher-balers. Both of these systems effectively ha...
متن کاملUrban warming reduces aboveground carbon storage.
A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abund...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 52 شماره
صفحات -
تاریخ انتشار 2015